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Abstract. Persistent charge and spin currents due to Aharonov–Bohm and Aharonov–Casher
interferences of correlated electrons moving along a mesoscopic ring are discussed at finite
temperature. As a function of applied flux the ground-state persistent currents have the shape
of a generalized saw-tooth, i.e. they consist of piecewise straight segments. The periods
and amplitudes of the oscillations are associated with the properties of the Fermi surface of
the elementary excitations (two Dirac seas), namely the group velocities and the matrix of
dressed generalized charges (Luttinger parameters). The temperature reduces the amplitudes of
oscillation by smearing the Fermi surface in a similar way to that for the de Haas–van Alphen
effect in 3D metals. The amplitude of higher harmonics decreases more quickly withT than
the fundamental one, changing the saw-tooth to a more sinusoidal form with much smaller
amplitude. The controlling parameters are the ratios of the thermal energy to the level spacings
in the ring. The results are discussed in the context of the exact Betheansatzsolutions for the
Hubbard chain and the supersymmetrict–J model.

1. Introduction

The exact solution of numerous one-dimensional models by means of Bethe’sansatzand
the quantum inverse scattering method in conjunction with field-theoretical treatments
has provided deep insight into the ground-state properties, classification of states,
thermodynamics, and the asymptotic behaviour of correlation functions (see reference [1]
for an extensive review).

The finite length of a conducting or magnetic ring can manifest itself in several ways. (i)
The contribution of impurities to extensive quantities (e.g. the energy, susceptibility, specific
heat) can become large and observable in mesoscopic systems, like for instance in the case
of the Kondo effect. (ii) The finite length of a ring with periodic boundary conditions gives
rise to quantum topological effects, i.e. persistent currents with oscillation periods given by
interference patterns of the Aharonov–Bohm (AB) [2] and Aharonov–Casher (AC) [3] type
due to the finite spacing of the energy levels. (iii) The finite-size corrections to the ground-
state energy determine the low-energy excitation spectrum and via conformal field theory the
critical exponents of the asymptotic long-distance dependence of correlation functions [4–7].

In the AB effect [2] the wavefunction of charged particles moving along a ring picks
up a phase proportional to the magnetic field flux threading the ring. Dual to the AB
effect is the AC effect [3] in which the wavefunction of particles with a magnetic moment
acquires a phase due to a radial electric field caused for instance by a straight homogeneously
charged line enclosed by the ring. The quantization of the flux or the phase (modulo 2π )
leads to periodic oscillations of the current [8]. Persistent currents have been observed
experimentally in small metal and semiconductor rings [9].
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Persistent currents in interacting systems were studied theoretically within the framework
of the exact Betheansatzmethod [10–20] and the bosonization technique [21, 22]. The
system responds to a magnetic or electric flux by virtually creating and annihilating states
at the left and right Fermi points of the Dirac sea conserving the total charge and spin.
The change of the energy with the flux is on a mesoscopic scale, i.e. proportional toL−1

for bands that are gapless in the thermodynamic limit, whereL is the length of the ring.
The low-energy excitation spectrum is given by the conformal towers of the system. In the
ground state the persistent current oscillations have the shape of a generalized saw-tooth.
A finite temperature and impurity scattering of the electrons smears the Fermi surface
and strongly decreases the amplitude of the higher-harmonic content. The experimentally
observed oscillations are then nearly sinusoidal. In addition, the coupling of the flux to the
particles may give rise to more than just one period of oscillation. AB oscillations at finite
T have been studied previously forspinlessfermions via the bosonization and Betheansatz
methods [21, 23].

In this paper we present a theoretical study of the AB and AC oscillations of strongly
interacting electrons moving along a ring at finite temperatures. We consider the cases of
two integrable systems, namely the Hubbard and supersymmetrict–J models. The structure
of the Betheansatzsolution is different for these two models, and they are representatives
of the two most common generic situations. The results are then believed to be valid
in general for Luttinger liquids and are not specific to the integrability. In section 2 we
state the conformal towers (finite-size corrections to the ground-state energy) for a general
integrable model and the expression for the persistent current atT = 0. The formulation for
finite temperatures is introduced in section 3. The oscillations are strongly suppressed with
temperature due to the incoherence introduced by the smearing of the Fermi surface with
T . In section 4 we specifically address the situations of the Hubbard and supersymmetric
t–J models. Concluding remarks are presented in section 5.

2. The finite-size excitation spectrum

The AB and AC effects are mesoscopic oscillations of the ground-state energy as a function
of a magnetic or electric field flux. The amplitude of these oscillations is proportional to
the level spacing in the ring, i.e. ¯hvF /L, whereL is the size of the ring andvF is the
Fermi velocity. The persistent current oscillations arise from virtual transitions of low-
lying excitations from one Fermi point to the other, induced by a nonzero quasimomentum
due to the field flux. The AB and AC oscillations are then determined by the mesoscopic
(finite-size) corrections to the energy.

Expanding the ground-state energy for an interacting Fermi gas as a power series in
L−1 we have [24]

E(L) = LE∞ + L−1Emes + · · · (2.1)

whereE∞ is the ground-state energy density andEmes is the mesoscopic contribution. We
consider here a single-electron-band model, like for instance the Hubbard ort–J models.
In view of the charge and spin separation in one dimension, charges and spins propagate
independently. The wavenumbers of charges (spinons) have all to be different and hence
the states follow Fermi statistics. The energies of charge and spin states are given in terms
of two energy bands, one for the charges and one for the spin states (labelled here with 1
and 2), each with a Fermi surface that depends on the chemical potential and the magnetic
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field. Both bands contribute to the mesoscopic corrections [24]

Emes =
∑
i=1,2

(2πvi)

{[
1

2

∑
j=1,2

ẑ−1
ij 1Nj

]2

+ n+i + n−i −
1

12

}

+
∑
i=1,2

(2πvi)

[∑
j=1,2

zji
(
Dj + {ϑj }

)]2

(2.2)

wherev1 andv2 denote the group velocities of the two bands (the Fermi velocities within
the charge and spin sectors are in general different), andẑ is the 2×2 matrix of generalized
dressed charges describing the coupling of the two Fermi surfaces. The quantum numbers
1N1 and1N2 are the departures in the populations of the bands from their average values,
D1 andD2 correspond to the backward-scattering quantum numbers within each band, and
the n±i represent the quantum numbers of the particle–hole-like excitations about the four
Fermi points. Finally, the{ϑj } are the fractional part (to the closest integer) of the AB
and AC phase shifts due to the coupling of the charges (spins) to the magnetic (electric)
flux. Equation (2.2) is the general form of the finite-size corrections to the ground-state
energy (long-wavelength low-energy excitations) of a two-component Luttinger liquid (two
Gaussian conformal field theories of central charge one) and holds independently of the
integrability of the underlying model.

The Betheansatzsolution of strongly correlated electron models provides the possibility
of actually calculating the Luttinger liquid parametersvj and zij . The vi also determine
the spin and charge susceptibilities and theγ -coefficient of the specific heat. The integral
equations satisfied by the excitations and the dressed charges are addressed in section 4
for the Hubbard and the supersymmetrict–J models. For the purpose of discussing the
temperature dependence of the persistent currents we only need the general expression (2.2),
but not the actual values of the Luttinger parameters.

From equation (2.2), the flux-dependent part of the energy is [10, 16–18]

1E(ϑ1, ϑ2) = 2π

L
v1

[
z11(D1+ {ϑ1})+ z21(D2+ {ϑ2})

]2

+ 2π

L
v2

[
z12(D1+ {ϑ1})+ z22(D2+ {ϑ2})

]2
(2.3)

which contains interference terms of the two Dirac seas of the type(D1+{ϑ1})(D2+{ϑ2}).
For the finite-temperature analysis it is therefore more convenient to study directly the
persistent currents, defined asji = −∂ 1E/∂ϑi for i = 1, 2. The currents are linear in
(Di + {ϑi}) and can be written as

ji(ϑ1, ϑ2) = j (1)i (ϑ1, ϑ2)+ j (2)i (ϑ1, ϑ2)

j
(l)
i (ϑ1, ϑ2) = −4π

L
vlzil

[
z1l(D1+ {ϑ1})+ z2l(D2+ {ϑ2})

]
.

(2.4)

For the ground state,ji(ϑ1, ϑ2) as a function of the fluxes consists of piecewise straight
segments, i.e. a generalized saw-tooth, with in general two periodicities. In section 4 we
discuss the oscillations for the Hubbard and supersymmetrict–J models.

3. Temperature dependence of the oscillations

To calculate the finite-T effects on the persistent current we first consider the change in the
free energy due to the temperature:

F(T ;ϑ1, ϑ2) = EG(ϑ1, ϑ2)+1F(T ;ϑ1, ϑ2) (3.1)
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whereEG is the ground-state energy of the finite-size system, and1F can be expressed as

1F(T ;ϑ1, ϑ2) = −T L
2π

∑
i=1,2

∫
dp ln

[
1+ exp(−εi(p;ϑ1, ϑ2)/T )

]
(3.2)

whereεi(p), i = 1, 2, are the energies of the excitations due to backward scattering (virtual
transitions from one Fermi point to the other) in the two bands. Expression (3.2) follows
from the Fermi statistics of the charge and spin states and the finite-size corrections (2.3),
andp is the momentum transfer across the Fermi surfaces. SinceT andL−1 are variables
of the same order, the contribution of1F is already mesoscopic and does not require a
finite-size expansion. Due to the one dimensionality of the interacting electron system, the
thermal population of the excitations is governed by the Fermi statistics. Note that1F(T )

vanishes asT → 0. The expression for1F(T ) is valid only for low temperatures, since
we neglected excitation branches without a Fermi surface. Hence, at finite temperature
the current consists of aT = 0 contribution (saw-tooth-like) and one that is temperature
dependent. From (3.2) the latter for lowT is given by

1j
(l)
i (T ;ϑ1, ϑ2) = − L

2π

∫
dp

∂εl(p;ϑ1, ϑ2)/∂ϑi

1+ exp(εi(p;ϑ1, ϑ2)/T )
. (3.3)

Keeping the number of particles in each band constant and linearizing the dispersions
about the Fermi points, the backward-scattering excitation energies are given by

εl(p;ϑ1, ϑ2) = 2π

L
vl
∣∣z1l(D1+ {ϑ1})+ z2l(D2+ {ϑ2})

∣∣ (3.4)

where theDi , depending on the initial conditions, are either integers or half-integers. Note
that theεl represent excitation energies and are always positive. It follows that

∂εl

∂ϑi
= 2π

L
vlzil sgn

(
z1l(D1+ {ϑ1})+ z2l(D2+ {ϑ2})

)
dpl = 2π

L
[z1l 1D1+ z2l 1D2]

(3.5)

where1D1 and1D2 are integers. The integration in equation (3.3) is now reduced to a
sum over the integers1D1 and1D2, so

1j
(l)
i (T ;ϑ1, ϑ2) = −2vlzil

2π

L

∑
m=1,2

zml
∑
Dm

sgn(Dm + {ϑm})
1+ exp

[
(2πvl/T L)zml|Dm + {ϑm}|

] . (3.6)

The first factor of 2 arises because each band has two Fermi points that contribute equally.
It is of course the same to sum overDm or 1Dm, and while the sum over one quantum
number is carried out, the other one is kept at the Fermi level. The temperature only enters
the exponential via a dimensionless parameter

2πvlzml/LT

i.e. the level spacing over the temperature, which controls the smearing of the Fermi surfaces
and hence determines the amplitudes of oscillation. Since only the states close to the Fermi
surface contribute because of the exponential, we can extend the sum overDm from −∞
to ∞. If the Dm are half-integers, then to simplify the notation, we can absorb 1/2 into
{ϑm} and reintroduce the parity at a later stage. Hence, at this point we will consider the
Dm to be integers.

It is convenient to rewrite equation (3.6) using Poisson’s formula; using the notation

x = (2π/L)Dm
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we obtain

1j
(l)
i (T ;ϑ1, ϑ2) = −2vlzil

∑
m=1,2

zml

∫ ∞
−∞

dx
sgn(x + (2π/L){ϑm})

1+ exp
[
(vlzml/T )|x + (2π/L){ϑm}|

]
− 4vlzil

∑
m=1,2

zml

∞∑
s=1

(−1)s
∫ ∞
−∞

dx
cos(Lsx) sgn(x + (2π/L){ϑm})

1+ exp
[
(vlzml/T )|x + (2π/L){ϑm}|

] .
(3.7)

The non-oscillating terms in (3.7) vanish by symmetry of the integrand. The oscillatory
terms can be reduced to

1j
(l)
i (T ;ϑ1, ϑ2) = −4vlzil

∑
m=1,2

zml

∞∑
s=1

(−1)s sin
(
2πs{ϑm}

) ∫ ∞
−∞

dx
sin(Lsx) sgn(x)

1+ exp
[
vlzml|x|/T

]
(3.8)

which using a partial integration yields

1j
(l)
i (T ;ϑ1, ϑ2) = −4vlzil

L

∑
m=1,2

zml

∞∑
s=1

(−1)s

s
sin
(
2πs{ϑm}

)
+ v2

l zil

T L

∑
m=1,2

z2
ml

∞∑
s=1

(−1)s

s
sin
(
2πs{ϑm}

) ∫ ∞
−∞

dx
cos(Lsx)

cosh2
(
vlzmlx/2T

) .
(3.9)

Consider now the Fourier-series expansion of the saw-tooth function{x}, defined asx
in the interval−1/2< x < 1/2 and periodically continued with period one:

{x} = − 1

π

∞∑
s=1

(−1)s

s
sin(2πsx). (3.10)

Hence, the first term of expression (3.9) is just
4πvlzil
L

∑
m=1,2

zml{ϑm} (3.11)

and exactly cancels theT = 0 ground-state current, equation (2.4). Carrying out thex-
integral in the second term of (3.9), we finally have that

ji(T ;ϑ1, ϑ2) = j (1)i (T ;ϑ1, ϑ2)+ j (2)i (T ;ϑ1, ϑ2)

= 4πT
∑

l,m=1,2

zil

∞∑
s=1

(−1)s
sin
[
2πs(ϑm +Dm)

]
sinh(πLsT /vlzml)

(3.12)

where we reintroduced the initial phase due to the quantum numbersDm (parity effect). With
increasing(LT/vlzml), i.e. temperature over level spacing, the amplitudes of the harmonic
content decreases rapidly, changing the saw-tooth pattern into a more sinusoidal one.

4. Application to integrable systems

In this section we discuss the persistent current oscillations at finite temperatures for two
integrable models, the Hubbard and the supersymmetrict–J models. The Betheansatz
ground states for these models are different, and hence they have different AB and AC
interference patterns. The Hubbard and the supersymmetrict–J models are representatives
of the two most commonly found structures of Betheansatzsolutions of integrable correlated
electron systems. The results presented here are believed to be generic to all systems with
Luttinger liquid properties and are not specific to the condition of integrability.
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4.1. The Hubbard model

The Hubbard Hamiltonian is given by

H = −
∑
iσ

(
c
†
iσ ci+1σ + c†i+1σ ciσ

)+ U∑
i

ni↑ni↓ (4.1)

wherec†iσ creates an electron of spinσ at the sitei and niσ = c
†
iσ ciσ . Here we equated

the hopping matrix element to 1. The Hubbard model has been diagonalized within the
framework of Bethe’sansatzin terms of two sets of quantum numbers,{In}, n = 1, . . . , Nc
for Nc charges and{Jα}, α = 1, . . . , Ns for Ns reversed spins [25]. These quantum numbers
are integers or half-integers depending on the parities ofNc andNs , i.e. In = Ns/2 (mod
1) andJα = (Nc + Ns + 1)/2 (mod 1). All quantum numbers within one set have to be
different (Fermi statistics). In the ground state the quantum numbers are densely distributed,
i.e. they form a sequence fromImin to Imax and fromJmin to Jmax , respectively, without
leaving holes. The backward-scattering quantum numbersDc andDs are then determined
by 2Dc = Imin + Imax (mod 1) and 2Ds = Jmin + Jmax (mod 1) [24].

Each state of the system is uniquely determined by a set of quantum numbers{In} and
{Jα}. The quantum numbers determine the generalized wavenumbers (rapidities) for the
propagation of charges and spinons. For the ground state the occupation of states follows
from Fermi’s statistics and the dressed energy potentials,ε(k) andϕ(3), which satisfy the
Fredholm integral equations [26]

ε(k) = −2 cosk − µ−H/2+
∫ B

−B
d3 a1(3− sink)ϕ(3)

ϕ(3) = H −
∫ B

−B
d3′ a2(3−3′)ϕ(3′)+

∫ Q

−Q
dk coska1(3− sink)ε(k)

(4.2)

wherean(3) = (nU/4π)/(32 + (nU/4)2). The integration limitsQ andB correspond to
the Fermi surfaces of charges and spinons, respectively, and are determined by the zeros
of the energies,ε(±Q) = 0 andϕ(±B) = 0. The distribution densities for the rapidities,
ρ(k) andσ(3), satisfy similar integral equations [25]:

ρ(k) = 1

2π
+ cosk

∫ B

−B
d3 a1(3− sink)σ (3)

σ(3) = −
∫ B

−B
d3′ a2(3−3′)σ (3′)+

∫ Q

−Q
dk a1(3− sink)ρ(k).

(4.3)

The elementary charge and spin excitations of the Hubbard chain are given by1Ec(k) =
|ε(k)| and1Es(3) = |ϕ(3)| with respective momenta

pc(k) = 2π
∫ k

0
dk′ ρ(k′) ps(3) = 2π

∫ 3

0
d3′ σ(3′).

From the definition ofQ andB the excitation energies vanish at the respective Fermi points.
Linearizing about the Fermi level we obtain the group velocities

vc = ∂ε

∂k

∣∣∣∣
Q

[2πρ(Q)]−1 vs = ∂ϕ

∂3

∣∣∣∣
B

[2πσ(B)]−1. (4.4)

The remaining Luttinger parameters are the matrix of dressed generalized charges, defined
as zic = ξi,c(Q) and zis = ξi,s(B), where theξi,j are the solution of the set of integral
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equations [24]

ξi,c(k) = δi,c +
∫ B

−B
d3 a1(3− sink)ξi,s(3)

ξi,s(3) = δi,s −
∫ B

−B
d3′ a2(3−3′)ξi,s(3′)+

∫ Q

−Q
dk coska1(3− sink)ξi,c(k).

(4.5)

The dressed charges simplify in the zero-field limit, i.e. whenB → ∞, wherezcs = 0,
zss = 2−1/2, and zsc = zcc/2, so the matrix of dressed charges then just depends on one
non-universal parameter,zcc. The dependence of the group velocities andzcc onU and the
band-filling is discussed in references [1, 6].

The AB and AC phase shifts for the Hubbard model are given by [10, 11, 16]

ϑc = φ

φ0
+ F

F0
ϑs = 2F

F0
(4.6)

since up-spin electrons carry charge and spin, and spinons reduce the magnetization by ¯h.
Here φ0 = hc/e is the magnetic flux quantum andF0 = hc/µ is its electric analogue,
whereµ is the magnetic moment of the electron. For the AB effect we haveF = 0 and
the temperature dependence of the persistent current is

jc(T ;φ) = 4πT
∑
l=c,s

zcl

∞∑
n=1

(−1)n
sin
[
2πn(φ/φ0+Dc)

]
sinh(πnLT/vlzcl)

(4.7)

where the parity of the oscillations depends on whetherNs is even or odd, i.e. each spin
flip changes the parity. As a function of temperature, the(T = 0) saw-tooth [10, 16] is
gradually smeared (the amplitude decreases dramatically) and becomes more sinusoidal as
the higher harmonic content is suppressed.

The AC effect (φ = 0), on the other hand, shows two periodicities as a function ofF ,
namelyF0 andF0/2. The temperature dependence of the persistent spin current is

js(T ;F) = 4πT
∞∑
n=1

(−1)n
∑
l=c,s

zcl + 2zsl
sinh(πnLT/vlzcl)

sin
[
2πn(F/F0+Dc)

]
+ 4πT

∞∑
n=1

(−1)n
∑
l=c,s

zcl + 2zsl
sinh(πnLT/vlzsl)

sin
[
2πn(2F/F0+Ds)

]
(4.8)

where the parity, i.e. whetherDc andDs take integer or half-integer values, again depends
on the number of chargesNc and reversed spinsNs . As a function of temperature the
amplitude of the higher-harmonic content is strongly reduced. The AC effect atT = 0 has
been studied in references [10, 16].

4.2. The supersymmetrict–J model

The t–J model is defined by the Hamiltonian

H = −
∑
iσ

P
(
c
†
iσ ci+1σ + c†i+1σ ciσ

)
P + J

∑
iσσ ′

[
c
†
iσSσσ ′ciσ ′ · c

†
i+1σ ′Sσ ′σ ci+1σ − 1

4
niσ niσ ′

]
(4.9)

wherec†iσ creates an electron of spinσ at sitei, niσ = c†iσ ciσ , theS are spin-1/2 operators,
andP is a projector that excludes the double occupancy of the sites. The model is integrable
at the supersymmetric pointJ = 2 (see references [1, 27, 28]), where we equated the
hopping to 1. The supersymmetrict–J model has been diagonalized within the framework
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of Bethe’sansatzin terms of two sets of quantum numbers,{In}, n = 1, . . . , Nu for Nu
unpaired electrons carrying charge and spin, and{Jα}, α = 1, . . . , Np for Np pairs of
electrons (spin singlets). All quantum numbers within one set have to be different (Fermi
statistics). Again, these quantum numbers are integers or half-integers depending on the
parities ofNu andNp, i.e. In = Np/2 (mod 1) andJα = (Nu +Np + 1)/2 (mod 1). In the
ground state the quantum numbers are densely distributed, forming a sequence fromImin to
Imax and fromJmin to Jmax , respectively, without leaving holes, so the backward-scattering
quantum numbers are 2Du = Imin + Imax (mod 1) and 2Dp = Jmin + Jmax (mod 1).

The occupation of states for the ground state is governed by the dressed energy
potentials,ε(k) andψ(3), for the unpaired and paired states, respectively, satisfying the
Fredholm integral equations [28]

ε(p) = −2+ 2πa1(p)− µ−H/2−
∫
|3|>Q

d3 a1(3− p)ψ(3)

ψ(3) = −4+ 2πa2(3)− 2µ−
∫
|3′|>Q

d3′ a2(3−3′)ψ(3′)−
∫
|p|>B

dp a1(3− p)ε(p)
(4.10)

where nowan(3) = (n/2π)/(32 + (n/2)2). The Fermi surfaces and the integration limits
are determined by the zeros of the energies,ε(±B) = 0 andψ(±Q) = 0. The distribution
densities for the rapidities,ρ(p) andσ ′(3), satisfy similar integral equations [1, 28]:

ρ(p) = a1(p)−
∫
|3|>Q

d3 a1(3− p)σ ′(3)

σ ′(3) = a2(3)−
∫
|3′|>Q

d3′ a2(3−3′)σ ′(3′)−
∫
|p|>B

dp a1(3− p)ρ(p).
(4.11)

The elementary excitations of thet–J chain are given by1Eu(p) = |ε(p)| and1Ep(3) =
|ψ(3)| with respective momenta

pu(p) = 2π
∫ p

−∞
dp′ ρ(p′) pp(3) = 2π

∫ 3

−∞
d3′ σ ′(3′).

The excitation energies vanish at the Fermi points and the group velocities are

vu = − ∂ε
∂p

∣∣∣∣
B

[2πρ(B)]−1 vp = −∂ψ
∂3

∣∣∣∣
Q

[2πσ ′(Q)]−1. (4.12)

The matrix of dressed generalized charges is defined asziu = ξi,u(B) and zip = ξi,p(Q),
where theξi,j are the solutions of [15]

ξi,u(p) = δi,u −
∫ B

−B
dp′ a2(p − p′)ξi,u(p′)+

∫ Q

−Q
d3 a1(3− p)ξi,p(3)

ξi,p(3) = δi,p +
∫ B

−B
dp a1(3− p)ξi,u(p).

(4.13)

In zero field (B → ∞), the dressed charges arezpu = 0, zuu = 2−1/2, and zup = zpp/2,
so the matrix of dressed charges then just depends on one non-universal parameter,
zpp. The dependence of the group velocities andzpp on the band filling is discussed in
references [1, 15].

For the supersymmetrict–J model the two rapidity bands correspond to unpaired (simple
charge and spin) and paired (double-charged singlet) electrons, so the phase shifts are

ϑu = φ

φ0
+ F

F0
ϑp = 2φ

φ0
. (4.14)
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The situation is then reversed with respect to the Hubbard chain, namely for thet–J model
the AB effect is the superposition of two periods and the AC effect has a single period. For
the AB effect (F = 0) the temperature dependence of the persistent current is given by

jc(T ;φ) = 4πT
∞∑
n=1

(−1)n
∑
l=u,p

zul + 2zpl
sinh(πnLT/vlzul)

sin
[
2πn(φ/φ0+Du)

]
+ 4πT

∞∑
n=1

(−1)n
∑
l=u,p

zul + 2zpl
sinh(πnLT/vlzpl)

sin
[
2πn(2φ/φ0+Dp)

]
(4.15)

where the parity, i.e. whetherDu andDp take integer or half-integer values, depends on
the number of unpaired (Nu) and spin-paired (Np) electrons. Again the higher-harmonic
content is strongly reduced with temperature.

The AC effect (φ = 0) at T = 0 is a simple saw-tooth of periodF0. The temperature
dependence of the persistent spin current is then

js(T ;F) = 4πT
∑
l=u,p

zul

∞∑
n=1

(−1)n
sin
[
2πn(F/F0+Du)

]
sinh(πnLT/vlzul)

(4.16)

where the parity of the oscillations depends on whetherNp is even or odd, i.e. the addition
of a pair changes the parity. As a function of temperature the(T = 0) saw-tooth is gradually
smeared and becomes more sinusoidal as the higher-harmonic content is suppressed.

5. Conclusions

Charged particles couple to the magnetic field flux threading the ring, giving rise to an AB
quantum interference pattern and a persistent charge current. The dual effect is the AC
quantum interference of particles carrying a magnetic moment which couples to a radial
electric field at the metallic ring. AtT = 0 the persistent currents have a generalized
saw-tooth shape consisting of piecewise straight segments. The parity of the oscillations is
controlled by the total number of electrons and the magnetization. The amplitude of the
oscillation is determined by the spacing of the energy levels in the ring, ¯hvF /L, i.e. they
arise from the mesoscopic corrections to the ground-state energy. The persistent currents
are then determined by the Luttinger parameters of the system, i.e. the group velocities and
the matrix of dressed generalized charges. The latter describes the coupling of the various
Fermi points. We considered a correlated electron system, which, in view of the charge–spin
separation in one dimension, has a low-energy excitation spectrum given by two Dirac seas
(two classes of excitations).

The temperature changes the saw-tooth to a more sinusoidal pattern with the same
periodicity but strongly reduced amplitude.T suppresses the higher-harmonic content, as a
consequence of the smearing of the Fermi surface. The controlling dimensionless parameter
is (LT/vF ), i.e. the thermal energy over the level spacing. The level spacing depends on the
energy band, and the quantum number varied. The characteristic temperature distinguishing
between the high- and low-T regimes isT0 = vF /πL. The physical picture is the same
as in the de Haas–van Alphen effect, whereT introduces incoherence in the wavefunction
while a particle completes its closed orbit. Scattering off imperfections along the ring gives
rise to a mean free path and an effective Dingle temperature. Consequently, the observed
oscillations are not saw-tooth-like, but always nearly sinusoidal.

In section 4 we applied the general results to two integrable models, namely the Hubbard
chain and the supersymmetrict–J model. Within the framework of Bethe’sansatzthese
models have different ground-state structure (charges and spinons versus unpaired and paired
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electrons). These structures are believed to be representative for a large number of models
and not specific to the integrability. The results presented in this paper extend calculations
(using the bosonization of fermions [21] and the Betheansatz[23]) for systems with only
one Fermi surface (spinless fermions with charge) to the more realistic situation of electrons
with charge and spin. The interference of the Fermi surfaces in the present case may lead
to more than one periodicity (period halving).

The results presented in this paper are expected to hold for all models with a Luttinger
liquid representation for the low-energy excitations. This is satisfied for most one-
dimensional systems with gapless excitation spectra. A model with the (linear) Luttinger
liquid spectrum extended to all energies is integrable. Small deviations from the linearized
excitation spectrum away from the Fermi surface may spoil the integrability, but without
changing the relevant low-energy properties. Hence, the charge and spin stiffnesses are the
same, independently of the integrability.

The authors of reference [29] studied a tagged spinless particle coupling to the flux that
interacts with a lattice gas of spinless fermions. This model can be interpreted as a two-band
model with only one of the bands having a Fermi surface. The low-energy excitations are
therefore not of the Luttinger liquid type, except when the hoppings in the two bands are
equal. In this case the model has an additional symmetry and is integrable. The fact that the
stiffness for this model is nonzero at finite temperature only in the integrable case is therefore
not in contradiction to the results presented here. The model can alternatively be considered
as an impurity model with a non-Fermi-liquid low-temperature fixed point [30, 31].
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